airpointer ${\ensuremath{\mathbb R}}$ CO module

IR Absorption

Lambert-Beer's Law: $I = I_0 e^{-\alpha Lc}$ $C = \ln (I_0/I) (1/\alpha L)$

- I: Intensity of the light transmitted (after absorption)
- I_o: Intensity of the light emitted
- α : absorption coefficient of the gas (here: CO)
- L: absorption path length
- c: concentration of the absorbing gas (here: CO)

Flow Diagram

Flow Diagram

Unfortunately, water and CO_2 also absorb light with wavelength around 4.7 λ m. The CO Module uses a method called Gas Filter Correlation (GFC) to overcome their interfering effect.

NB: Saphire will pass the 4.7 μ m photons. Normal glass is opaque at 4.7 μ m.

A change in CO_2 or H_2O concentration will impact both M and R: the M/R ratio stays constant

 \rightarrow M/R does not depend on H₂O and CO₂ concentration

A change in CO concentration will impact M, but not R: the M/R ratio changes \rightarrow M/R depends on CO concentration

CO bench

Increased path length = increased sensitivity

CO bench

CO bench

Flow Diagram

Parameters

Parameter CO			Value 1.151		Unit ppm		Status: BS-FS-SS 0 0 0								
CO_all	1.151	ppm	CO_raw	1.250	ppm	COSt	dDev	0.0442	ppm	CO_Avg (300 sec)	1.190	ppm	CalRatio (300 sec)	1.12823	
COMeas		2073.2			mV		CORatio		1.1282				-	-	
CORef		1837.1			mV										
CO_AGC		5.04			V		Setpoint AGC			5.0 (+/- 0.2)				V	
CO_Speed		1990			rpm		PreAmpCO			40.4				%	
COIRSourceVoltage		18.7			V		COPowerToSpeed			65.2			%	%	
PressCO		879.0			mbar		FlowCO		502.5			ml/n	ml/min		
BenchT		50.1			°C		PowerToCOBench		19.7			%			
COScrubberTemp		69.9			°C		PowerToCOScrubber			22.1			%		
CO_cylinder			1.0		bar										
CO Time Constant nr values to TC:					1200			StdDev last 10 samples: 0							
CO Slope:					1.098			CO Offset:				-0.060498			

Parameters

airpointer

Note: '-9999' is displayed for a missing value.

Span check

CO 1.306 ppm

Note: '-9999' is displayed for a missing value.

Calibration

- Using external zero air and external SO₂ cylinder

Preventive maintenance

- Change DFU filter (once a year)
- Change IR source (every 2 years)
- Never touch the mirrors inside the bench!

Full schedule available here: https://www.airpointer.tech/maintenance-schedule/

Thank you for your attention!

